Service

Rexroth **Bosch Group**

Axial Piston Variable Pump A10VO

RA 92703/11.07 1/44 Replaces: 06.07

Series 52/53 Size 10...85 Nominal pressure 3600 psi (250 bar) Peak pressure 4600 psi (315 bar) Open circuit

Series 52

Series 53

Contents

Ordering code - standard program	2
Hydraulic fluids	4
Technical data	5
Operating curves for pumps with pressure control	8
DR - Pressure control	9
DRG - Pressure control, remote	10
DRF (DFR) and DRS (DFR1) - pressure and flow contr	ol11
LA pressure, flow and power control	12
Unit dimensions, size 10	14
Unit dimensions, size 18	16
Unit dimensions, size 28	20
Unit dimensions, size 45	24
Unit dimensions, size 63	28
Unit dimensions, size 85	32
Combination pumps A10VO + A10V(S)O	36
Overview of through drive mounting options	36
Dimensions through drives	37
Installation notes	40
General information	44

Features

- Variable axial piston pump in swash plate design for hydrostatic drives in open circuits - Flow is proportional to drive speed and displacement. The flow is infinitely variable by adjustment of the swash plate.
- Strong bearings for long service life
- High permissible drive speeds
- High power to weight ratio
- Small dimensions
- Low noise level
- Good suction characteristics
- Axial and radial loading of drive shaft possible
- Pressure and flow control
- Electro-hydraulic pressure control
- Power control
- Electro-proportional displacement control
- Short response times

5

Ordering code - standard program

AI	OV(S) O / 5 01 02 03 04 05 0)6	07			V		09	10	11 1:	2				
Ax	kial piston unit								10	18	28	45	63	85	
) S	Swash plate design, variable								•	-	-	-	-	-	A10VS
N	Nom. pressure 3600 psi (250 bar), peak pr	essu	re 4	600) ps	i (3 [.]	15 k	bar)	-	•	•	•	•	•	A10V
Op	perating mode														
02 F	Pump, open circuit														0
Siz	ze							ſ	10	18	28	45	63	85	1
					in ^a	3			0.61	1.10	1.71	2.75	3.84	5.18	1
03 ~	~displacement V _{g max} in				(cı	m ³)			(10)	(18)	(28)	(45)	(63)	(85)	1
Co	ontrol devices ¹⁾										1	1	1	1	_
	Pressure control	DR							•	•	•	•	•	•	DR
	with hydraulic flow control	1									-				
	X-T open	D				F	R		•	-	•	•	•	•	DFF
	X-T open	DR				F			-	•	0	0	0	0	DRI
	X-T closed	+) FR	1			•	_	•	•	•	•	DFR
	X-T closed	DR				S			_		0	0	0	0	DR
	with flow control, electro-hydraulic adjust	ment	of	diffe	rent	ial I	pres	ssure	(invers	se prop	ortional	charact	eristic),	(RA 92	2 709)
	i	EF		D					-	0	0	0	•	•	EF.C
	with remote pressure control			LI					1	1	1		1		
	hydraulic				G				•	•	•	•	•	•	DRO
	electric, inverse characteristic	ED	•						-	•	•	•	•	•	ED
F	Power control														
	with pressure control	_,,									-				
	minimum start of control														
04	145 to 510 psi (10 to 35 bar)	LA	5	D					-	•	•	•	•	•	LA5
	520 to 1015 psi (36 to 70 bar)	LA	6	D					-	•	•	•	•	•	LA6
	1030 to 1520 psi (71 to 105 bar)	LA	7	D					-	•	•	•	•	•	LA7
	1535 to 2030 psi (106 to 140 bar)	LA	8	D					-	•	•	•	•	•	LA8
	2045 to 3335 psi (141 to 230 bar)	LA	9	D					-	•	•	•	•	•	LA9
	with remote pressure control								1	· · · · ·					
	min. start of control see above		Х	D	G				-	•	•	•	•	•	LAXC
	with pressure and flow control, X-T close	1 1		r r					1			- <u></u>	1		
	min. start of control see above	LA				S			-	•	•	•	•	•	LAXC
	with press. and flow controlol electr. adju	1 1		of dif	f. pr		s. (ir	nvers	e prop.	charac), X-T clo	osed (RA		_
	min. start of control see above	LA				S		•	-	•	•	•	•	•	LAX
	Electro-proportional displacement control (I														
	with pressure and flow control, positive c	- T - T	cteri							-					
		EP	Ŀ	D	,	•			-		•				EP.D
	with pressure and flow control, positive of				; de	acti	ivati	ion o	r contro	pi at I =			-	-	____
		EK	•	D		•			-		•		•		EK.

Seri

05

A10V(S)	0			/	5			-	V				
01	02	03	04		05	06	07		08	09	10	11	12

	Index			10	18	28	45	63	85	
	DR, DFR, DFR1, DR	RG, ED		-	•	•	•	•	2 ¹⁾	
06	DR, DRF, DRS, DRG	G, ED	-	•	0	0	0	0	3	
	EF, LA, EP, EK.			-	•	•	•	•	•	3
	Direction of rotation									
	viewing on shaft end							righ	nt hand	R
07							le	ft hand	L	
	Seals									
08	FKM (fluor-rubber)									v
	Shaft end			10	18	28	45	63	85	
	Splined shaft to SAE	J744, standard shaft		•	•	•	•	•	•	S
	Similar to shaft "S" h	nowever for higher input torque		-	•	•	•	•	-	R
09	Splined shaft to SAE	J744, reduced diameter, not for	through drive	•	•	-	•	•	•	U
	Similar to shaft "U" ł	nigher input torque, not for throug	gh drive	-	-	-	•	•		w
	Parallel shaft SAE w	ith key	•	-	•	•	•	-	K ²⁾	
	Tapered with Woodr	-	-		•	•	-	C ²⁾		
	Mounting flange									
10	SAE 2-hole			•	•	•	•	•		С
10	SAE 4-hole			-	-	-	-	•	0	D
	Port for service lines									
	SAE flange at rear, U	JNC fixing thread(no through driv	ve)	-	•	•	•	•	•	61
11	SAE flange on side- (for through drive)	opposite sides, UNC fixing thread	d	-	•	•	•	•	•	62
	Threaded ports at re	ar, UNC threads (no through driv	ve)	•	-	•	•	- 1	-	64 ²⁾
	Through drive									
	Without through driv	ve (standard for version 61 and 6	4)	•	•		•			N00
	Flange SAE J744	Coupler for splined shaft ³⁾	Sealing	I						
	82-2 (A)	5/8 in 9T 16/32DP	axial	-	0	•	•	•	•	K01
	82-2 (A)	3/4 in 11T 16/32DP	axial	-	0	•	•	•		K52
12	101-2 (B)	7/8 in 13T 16/32DP	axial	-	-	•	•	•	•	K68
	101-2 (B)	1 in 15T 16/32DP	axial	-	-	-	•	•	•	K04
	127-4 (C)	1 1/4 in 14T 12/24DP	axial	-	-	-	-	•	-	K15
	127-2 (C)	1 1/4 in 14T 12/24DP	axial	-	-	-	-	-	•	K07
	127-2 (C)	1 1/2 in 17T 12/24DP	axial	-	-	-	-	-	•	K24

¹⁾ Not for new projects. For new projects use only series 53. ²⁾ only Series 52

 $^{3)}$ 30° pressure angle, flat base, flank centering, fit class 5

• available • O in preparation - not available

Hydraulic fluids

Prior to project design, please see our technical data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable fluids) and RE 90223 (HF-fluids) for detailed information on fluids and operating conditions.

When using HF- or environmentally acceptable fluids attention must be paid to possible limitations of the technical data, if necessary contact us. (when ordering please state in clear text the fluid to be used). Operation on Skydrol is only possible after consultation with us.

Operating viscosity range

For optimum efficiency and service life we recommend that the operating viscosity be chosen in the range of:

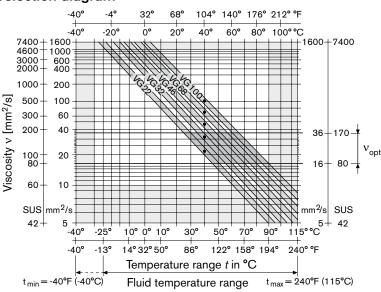
 $v_{out} = opt. operating viscosity 80...170 SUS (16 ... 36 mm²/s)$

referred to tank temperature (open circuit).

Limit of viscosity range

For critical operating conditions the following values apply:

 $v_{min} = 60 \text{ SUS (10 mm}^2/\text{s})$ for short periods (t \leq 1 min) at max. permissible leakage fluid temperature of 239 °F (115 °C).


Please note, that the max fluid temperature of 239 °F (115 °C) is also not exceeded in certain areas (for instance bearing area) The fluid temperature in the bearing area is approx. 7 °F (5 K) higher than the average leakage fluid temperature.

```
\begin{split} \nu_{max} = & 7500 \; \text{SUS} \; (1600 \; \text{mm}^2/\text{s}) \\ & \text{for short periods} \; (t \leq 1 \; \text{min}) \\ & \text{on cold start} \\ & (t_{min} = p \leq 435 \; \text{psi} \; (30 \; \text{bar}), \, n \leq 1000 \; \text{rpm}, \\ & -13 \; ^\circ \text{F} \; (\text{-}25 \; ^\circ \text{C})) \end{split}
```

At temperatures between -13 °F (-25 °C) and -40 °F (-40 °C) special measures may be required, depending on installation conditions. Please consult us for further information.

For detailed information on operation with low temperatures see data sheet RE 90300-03-B.

Selection diagram

Notes on the selection of the hydraulic fluid

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open circuit) in relation to the ambient temperature.

The fluid should be selected so that within the operating temperature range, the viscosity lies within the optimum range (v_{opt}) , see shaded section of the selection diagram. We recommend to select the higher viscosity grade in each case.

Example: at an ambient temperatue of X °F (X °C) the operating temperature in the tank is 140 °F (60 °C). In the optimum viscosity range (v_{opt} ; shaded area) this corresponds to viscosity grades VG 46 resp. VG 68; VG 68 should be selected

Important: The leakage fluid (case drain fluid) temperature is influenced by pressure and input speed, and is always higher than the tank temperature. However, at no point in the circuit may the temperature exceed 239 °F (115 °C).

If it is not possible to comply with these conditions because of extreme operating parameters or high ambient temperatures, please consult us.

Filtration of fluid

The finer the filtration the better the achieved cleanliness of the hydraulic fluid and the longer the life of the axial piston unit.

To ensure a reliable functioning of the axial piston unit, a minimum cleanliness of

20/18/15 to ISO 4406 is necessary.

At very high operating temperatures (195 °F (90 °C) to max. 239 °F (115 °C)) a cleanliness of

19/17/14 to ISO 4406 is necessary.

If above mentioned grades cannot be maintained please consult us.

Technical data

Operating pressure range

Inlet

Absolute pressure at port S

P _{abs min} _	12 psi (0,8 bar)
P _{abs max} _	73 psi (5 bar)

To determine the min. required inlet pressure p_{abs} at inlet port S or the reduction of displacement at higher input speeds see the diagram to the right.

Outlet

Pressure at port B

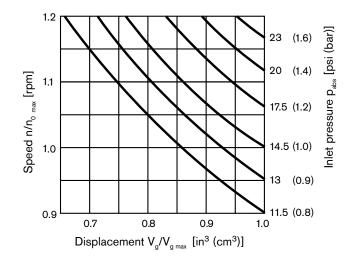
Nominal pressure p_N _____ 3600 psi (250 bar) Peak pressure p_{max} _____ 4600 psi (315 bar)

(Pressures to DIN 24312)

Direction of flow

S to B.

Case drain pressure


Maximum permissible case drain pressure (port L, L_{1/2}):

maximum 7 psi (0,5 bar) higher than the inlet pressure at port S, however not higher than 29 psi (2 bar) absolute.

P_{L abs max} _____ 29 psi (2 bar)

Maximum permissible speed (Speed limit)

Permissible speed by increase of inlet pressure p_{abs} at the inlet port S or reduction of displacement ($V_q \le V_{q max}$).

Technical data

Table of	f values	(theoretical values	, without	considering	efficiencies	and tolerances	; values rounded)
----------	----------	---------------------	-----------	-------------	--------------	----------------	-------------------

Size			A10V(S)	0	10	18	28	45	63	85
Displaceme	nt		V _{g max}	in ³	0.64	1.10	1.71	2.75	3.84	5.18
			0	(cm ³)	(10,5)	(18)	(28)	(45)	(63)	(85)
Speed ¹⁾										
max. at V _g	max		n _{0 max}	rpm	3600	3300	3000	2600 ²⁾	2600	2500
max. at V _g			n _{0 max zul}	rpm	4320	3960	3600	3120	3140	3000
Flow										
at n _{0 max}			q _{VO max}	gpm	9.7	15.6	22	31	43	55
				(L/min)	(37)	(59)	(84)	(117)	(163)	(212)
at n _E =150	0 min ⁻¹		q _{VE max}	gpm	4	7.1	11.1	18	25.1	34
_				(L/min)	(15)	(27)	(42)	(68)	(95)	(128)
Power	∆p = 3	600 psi								
	(250 b	ar)								
at n _{0 max}			P _{o max}	HP (kW)	22 (16)	34 (25)	47 (35)	65 (49)	90 (68)	119 (89)
at n _E =150	0 min ⁻¹		P _{E max}	HP (kW)	9.4 (7)	15 (11)	24 (18)	38 (28)	52 (39)	71 (53)
Torque			E max							
at $V_{g max}$	∆p = 3	3600 psi	T _{max}	lb-ft	31	52	82	132	184	247
	(250 k	(250 bar)		(Nm)	(42)	(71)	(111)	(179)	(250)	(338)
	$\Delta p = -$	∆p = 1440 psi		lb-ft	13	21	33	53	74	102
	(100 b	(100 bar)		(Nm)	(17)	(29)	(45)	(72)	(100)	(135)
Torsional stit	ffness	Shaft S	с	lb-ft/rad	6760	8082	16400	27560	48100	105100
				(Nm/rad)	(9200)	(11000)	(22300)	(37500)	(65500)	(143000
		Shaft R	с	lb-ft/rad	_	10870	19400	30240	51200	_
				(Nm/rad)	-	(14800)	(26300)	(41000)	(69400)	_
		Shaft U	с	lb-ft/rad	5020	5870	-	22130	36290	75900
				(Nm/rad)	(6800)	(8000)	-	(30000)	(49200)	(102900
		Shaft W	с	lb-ft/rad	-	-	_	25370	39830	86960
				(Nm/rad)	-	-	-	(34400)	(54000)	(117900
		Shaft K/C	с	lb-ft/rad	7965	-	19770	32380	54506	-
				(Nm/rad)	(10800)	-	(26800)	(43900)	(73900)	-
Moment of i	nertia ro	tary group	J _{TW}	lbs-ft ²	0.0142	0.2207	0.0403	0.0783	0.1329	0.2848
				(kgm²)	(0,0006)	(0,00093)	(0,0017)	(0,0033)	(0,0056)	(0,012)
Angular acceleration, max. ³⁾			α	rad/s ²	8000	6800	5500	4000	3300	2700
Fill volume			V	gal	0.05	0.06	0.08	0.13	0.21	0.26
				(L)	(0,2)	(0,25)	(0,3)	(0,5)	(0,8)	(1)
Weight approx. (without fluid)				lbs (kg)	17 (8)	25 (11,5)	31 (14)	40 (18)	48.5 (22)	75 (34)

¹⁾ Values are valid with inlet pressure of 15 psi (1 bar) at suction inlet S. With reduced displacement or increased inlet pressure the drive speed can be increased according to the diagram on page 5.

²⁾ For higher drive speeds please consult us.

³⁾ – These values are valid for conditions between the min. required and the max. permissible drive speeds.

For external sources of excitation (eg. diesel engine 2-8 fold rotary frequency, cardan shaft 2 fold rotary frequency).

- The limit is valid for a single pump.

- The load carrying capacity of the connecting parts must be taken into consideration.

Caution: Exceeding these limits can lead to a loss of operability, reduction of service life or complete destruction of the axial piston unit. The permissible values can be calculated.